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Abstract

As text-to-image synthesis methods being
widely used in real-world applications, the
need for evaluation metrics is becoming in-
creasingly pressing. In recent years, Inception
Score (IS)(Salimans et al., 2016), Fréchet In-
ception Distance (FID)(Heusel et al., 2017),
R-precision, and Semantic Object Accuracy
(SOA)(Hinz et al., 2019) have been the popular
evaluation metrics used by the SOTA text-to-
image synthesis models. Nevertheless, these
evaluation metrics only focus on image quality,
diversity, and consistency which is not compre-
hensive. In this project, we propose 2 different
methods to evaluate the physical consistency
of the image. One method combines segmenta-
tion and Vision Transformer (ViT)(Dosovitskiy
et al., 2020) to predict and classify the image.
Another method fine-tunes CLIP based on phys-
ical rules set to learn an image encoder that
can be used for scoring and classifying images.
We demonstrate that both methods can reach a
good accuracy on the dataset we built and can
give out a reasonable score to an image.

1 Introduction

In recent years, generative models have acquired
the capability to generate natural language that
is comparable to human language, create limit-
less synthetic images of high quality, and produce
highly diverse human speech and music. These
models can be utilized in various applications, such
as generating images from text inputs or learning
valuable feature representations. Some state-of-
the-art models, like GANs and diffusion models,
can generate high-quality pictures on most image-
generation tasks.

Despite the rapid growth of text-to-image syn-
thesis methods, current evaluation methods are
far from perfect. It is necessary to propose a
more comprehensive evaluation framework. Tradi-
tional evaluation methods such as Inception Score
(IS)(Salimans et al., 2016) and Fréchet Inception

Distance (FID)(Heusel et al., 2017) are intuitive but
have limited performance. R-precision and Seman-
tic Object Accuracy (SOA)(Hinz et al., 2019) are
better as they take the meaning of the text into con-
sideration. Counting Alignment (CA)(Dinh et al.,
2021) can evaluate whether the number of objects
is correct, but it cannot detect some features that
violate physical laws.

Those methods only focus on image quality, di-
versity, and consistency which are not comprehen-
sive. To make evaluation metrics more comprehen-
sive, We suggest two distinct approaches for assess-
ing the physical coherence of the image. The first
approach involves using segmentation and Vision
Transformer to predict and categorize the image.
It segments the human in an image into different
parts first and then uses ViT to classify these pre-
processed images and give scores. The second
method fine-tunes CLIP based on physical princi-
ples to learn an image encoder that can be utilized
for scoring and classifying images.

We reproduced several experiments using four
different evaluation metrics: Inception Score,
Fréchet Inception Distance, Structure of Appear-
ance, and Pixel Accuracy, on four different text-to-
image synthesis models: AttnGAN, AttnGAN++,
CPGAN, and real images. Using these results as
our baseline, we trained and fine-tuned our models.
We demonstrated that both techniques can achieve
high accuracy on their constructed dataset and can
provide a reliable score for an image.

2 Related Work

CLIP To analyze inputs and outputs in a text-
to-image model, here introduces CLIP(Radford
et al.,, 2021)(Contrastive Language-Image Pre-
training). State-of-the-art computer vision systems
are trained to predict a set of object categories. But
this type of system restricted generality and us-
ability since demands on supervision is expanded.
Natural Language Processing is used to analyze



the meaning of text with probability models. By
mapping raw text to image, CLIP can predict image
captions as visual concepts. It uses an efficient and
scalable way to learn SOTA image representations
on a data set of 400 million (image, text) pairs.
Further, CLIP has been tested performances on var-
ious downstream vision tasks, including zero-shot,
segmentation, caption, video, etc. As one of its
downstream tasks, comparing caption of an image
and input text can be used to evaluate their matches.

Capture Sub-parts of Objects Text-to-image
generation methods can produce high-quality and
high-resolution images, but they restricted on creat-
ing contents that human wouldn’t accepted. Judge,
Localize, and Edit(Park et al., 2022) aims to au-
tomatically judge the immorality of synthesized
images and manipulate images into a moral alter-
native. They trained an auxiliary text-based im-
morality classifier with 13,000 textual examples
and corresponding binary labels, and utilized CLIP
to convert texts and images into joint embedding,
then the recognizer will classified input texts in a
zero-shot manner. Next, they extended the textual
immorality classifier to visual attribute identifica-
tion. Employing a random input approach can mea-
sure the importance of an image region by setting
it masked or observed based on model’s decision
to classify immorality. By utilizing the idea of
textual and visual concepts identification, human
information or body parts can be retrieved.

ViT ViT (Vision Transformer)(Dosovitskiy et al.,
2020) is a type of neural network architecture that
has been shown to perform well on computer vision
tasks such as image classification and object detec-
tion. It is based on the Transformer architecture
originally developed for natural language process-
ing and replaces the traditional convolutional layers
with self-attention mechanisms that allow the net-
work to attend to different parts of the input image.
This makes it particularly effective for processing
large images and handling long-range dependen-
cies. Vit has achieved state-of-the-art performance
on several benchmark datasets and is considered a
promising direction for future research in computer
vision.

Evaluation Metrics Although the great achieve-
ments of the state-of-the-art methods for text-to-
image synthesis such as GANs, Stable Diffusion,
the present evaluation methods are not as desired.
The current evaluation pipelines mainly focus on

two aspects: the image quality and the conformity
between the image and its caption. Some com-
monly used evaluation metrics for the image qual-
ity are Inception Score (IS)(Salimans et al., 2016)
and Frechet Inception Distance (FID)(Heusel et al.,
2017). IS metric uses the pretrained Inception-
v3 model to calculate the Kullback-Leibler diver-
gence (KL-divergence) between conditional distri-
bution and cmarginal distribution of the generated
images. FID calculates the Frechet distance be-
tween the actual images and the generated images
using the feature from the pretrained Inception-
v3 model .. In addition to these, many evaluation
metrics have been proposed for text-image consis-
tency. R-precision (RP)(Xu et al., 2017) used syn-
thesized image query again the input caption and
calculated matching score using cosine similarity
between image encoding vector and text encod-
ing vector. Semantic Object Accuracy (SOA)(Hinz
et al., 2019) using the pre-trained object detector
to evaluate whether objects mentioned in the cap-
tion are contained in the image, which ranks the
models in a similar way to humans. Furthermore,
there are some pipelines that combine different
evaluation metrics together to achieve a better per-
formance such as TISE (Text-to-Image Synthesis
Evaluation)(Dinh et al., 2021).

CDCL-human-part-segmentation Cross-
Domain Complementary Learning Using Pose
for Multi-Person Part Segmentation (Lin et al.,
2020), is a human body part segmentation method
proposed by Kevin Lin and his team. This
approach takes advantage of the rich and realistic
variations of the real data and the easily obtainable
labels of the synthetic data to learn multi-person
part segmentation on real images without any
human-annotated labels. Without any human
labeling, this method performs comparably to
several state-of-the-art approaches which require
human labeling on Pascal-Person-Parts and COCO-
DensePose datasets. Their pre-trained model
predicts 6 body parts in the images and achieves
72.82% mIOU on the PASCAL-Person-Part
dataset. The segmentation of this model is based
on the human skeleton (pose) representation and
is less disturbed by other factors such as clothing.
The segmentation of the target image will help us
to train the classification model later.



3 Preliminaries

Traditional metrics such as IS and FID are used
to evaluate image quality. The formulas of IS and
FID are defined as follows:
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where z is the generated image and y is the class
label, X, ~ N (pr, X,) and Xy ~ N (g, 3,) are
the features of real images and generated images
extracted by a pre-trained Inception-v3 model. For
IS, smaller P(y|x) means the object in the image
is more distinct, and larger p(y) means the im-
ages are more diverse. For FID, a lower the dis-
tance between real images and generated images
means better image quality and diversity. Other
metrics focus on the consistency between text and
image. Semantic Object Accuracy (SOA) is pro-
posed to determine whether the objects in the text
can be matched in the image. There are two types
of SOA metrics which are SOA-I (average recall be-
tween images) and SOA-C (average recall between
classes), their formulas are as follows:
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where C is the object class set, I, is a set of images
belonging to object class ¢ and YOLOv3(i.) €
{0, 1} will return 1 if YOLOV3 detected an object
of class c. Despite SOA can match objects between
texts and images, it fails to consider the relation
between objects. Positional Alignment(PA) is pro-
posed to evaluate the position relation between ob-
jects. PA defines a set of positional words as W
and constructs a query problem. For each gener-
ated image G; and text T}, it generates mismatched
texts F; by replacing the position word w. In this
way, a set Dy, = {(Guwi, Twi, sz)}f\;““l is created,
where N,, is the number of texts having position
word w. PA is calculated by the query success rate
of triplets in D,,, the formula is as follows:
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where k,, is the number of success cases, and ||
is the total number of words. Despite the aforemen-
tioned metrics have covered wide aspects, there are

more details needed to be considered when we eval-
uate the text-to-image synthesis. Inspired by the
existing metrics, we propose a more comprehen-
sive metric that can evaluate whether the generated
images obey the defined physical rules or common-
sense which are not mentioned in the original text.

4 Physical Consistency Evaluation and
Classification

Inspired by popular state-of-the-art methods for
text-to-image synthesis, our approach classifies the
physical inconsistency of output images. One ap-
proach, we use CLIP to embed image captions
and pixels into a common space and assign body
words with high prediction to each cluster of pix-
els. Then, we take image feature encoding to a
classification network to produce evaluation met-
rics. In another approach, we trained a classifier
to determine whether the generated single-person
images are consistent with physical common sense
using CDCL+Pascal Human body part Segmenta-
tion+Vision Transformer(ViT).

4.1 Segment+ViT

The core idea of this approach is to use a body part
segmentation model to automatically annotate and
highlight each part of the human body in the gener-
ated images, and later use the ViT model to learn
the relative relationships among them.

Because there is a limit to the amount of data that
we can label manually and the self-attention layer
of ViT lacks locality inductive bias, we need to aug-
ment our dataset. We used shift(cv2.warpAffine),
RandomRotation(10,90), and flip to augment our
data manually. By using data augmentation, we
want our ViT model to focus attention on the rel-
ative relationship of body parts, rather than mem-
orizing the absolute position of each part on the
image. We then use the pre-trained CDCL-human
part segmentation model to automatically segment
and annotate the body into 7 parts from the gen-
erated images. The segmented images are then
resized and later used for training the ViT classifi-
cation model.

Since ViT models require a huge amount of data
to achieve good performance. It’s not feasible to
train a ViT model from scratch. So we used a
pre-trained ViT model vit-base-patch16-224-in21k,
which was trained on ImageNet-21k(14 million im-
ages, 21,843 classes) at resolution 224x224. The
pre-trained model learns an inner representation



of images that can then be used to extract features
useful for downstream tasks. After that, we put in
our data (original + augmented) to fine-tune our
ViT model. In this way, we obtain a classifier that
can determine with acceptable accuracy whether
the generated single-person picture conforms to
physical common sense.

4.2 Fine-tuned CLIP

As shown in Figure 1, Our model takes advantage
of the basic CLIP model. We used three steps to
analyze the physical rules of images and evaluate
the physical consistency score: 1. generate texts
that describe the images, 2. fine-tune the CLIP
base model, and 3. classify the image embedding
to evaluate scores.

4.2.1 Free-Form Caption Generation

First, we tested the accuracy of the CLIP model
with prompts of different structures, content, sen-
sitivity, and inclusiveness. A good finding shows
CLIP is not sensitive to the choice of numbers,
some words will hint at the entity of images, how-
ever, they depend on the quality of data from the
pre-trained model. According to each image, we
manually annotate them by the following features:
how many people are in the picture, the visual im-
pact of character sizes in distances, the direction in
which characters are facing, and the correctness of
shapes for character head, hands, and legs. Then
we use a template to generate free-form captions
for the input images, and in addition, on the tem-
plate, we include the word "human" to imply it’s a
human-related text-image matching job.

4.2.2 Fine-tuning

Our approach to fine-tuning CLIP for Physical Con-
sistency Evaluation is shown in Figure 1. Specifi-
cally, text and image representations are both gener-
ated by transformers, vision transformer is applied
to produce image representation. The trained im-
age encoder is used to produce evaluation metrics.

Language Encoder We adopt the well-designed
pre-trained language model from the CLIP base
which is published by OpenAl. We analyzed the
language model and found out it has logical flows.
And training a language model with 400,000,000
text is difficult for our work due to time limitations,
thus we decided to fine-tune the CLIP pre-trained
language model. We batched free-form captions
into a balanced batch sampler, to maximize and

reduce the bias. Then we tokenize batches of free-
form captions and feed them into the pre-trained
language model, for a total of 10 epochs, and all
model weights are updated.

Image Encoder We generated images from cap-
tions of the MS-COCO dataset with people objects
with the Stable Diffusion model. We leverage the
dataset to make our image annotation equally con-
tributed. Then input images are downsampled to
be fed into a vision transformer. Assuming the in-
put image size is H x W, and the down-sampling
factor is ds, we define H = % and W = %.

After the text and image inputs are embedded,
we correlate them using inner products, creating
atensor H x W x N as the inner product of the
N-dimensional vector of text embedding and the
image embedding. After obtaining the correlation
tensor, we check the cosine similarity of text and
image pairs for minimizing it.

4.2.3 Physical Consistency Score Evaluation

For the downstream fine-tuning experiments, we
treated the fine-grained physical consistency at-
tributes from the image encoder as a binary clas-
sification task where each attribute in an image
is assumed as an independent feature and images
can be assigned multiple features which are shown
in Figure 1. Then we used an MLP layer with a
dropout of 0.2 to get the binary classification re-
sult. The score is calculated from the weights of
matched body parts multiply by the result classifi-
cation probability.

S Experiment

In the experiment section, we first test the previ-
ous evaluation metrics for text-image matching us-
ing the baseline model on the MS-COCO dataset.
And some early classification experiments based
on whether it conforms to common sense were
conducted on hand images. Then we evaluate
both the segmentation + ViT method and the fine-
tuning CLIP method in the generated images set
with people objects from the MS-COCO dataset.
We demonstrate the segmentation + ViT method
and the fine-tuning CLIP method has a remarkable
classification accuracy on our generated dataset.
What’s more, we will show both methods can give
out a reasonable score to judge the physical consis-
tency of the image based on the defined physical
rules set.
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Figure 1: The architecture of Fine-tuned CLIP and Physical Consistency Score Evaluation

5.1 Evaluation Metrics Reproduce

5.1.1 Experimental Setup

Datasets We use the MS-COCO dataset to test the
evaluation metrics. This dataset has approximately
120K images, where 80K images are for training
and 40K for validation. The MS-COCO dataset
also has coordinates of bounding boxes and seg-
mentation masks for 80 categories of objects and
pixel maps of 91 categories of background regions
like walls, sky, or grass.

Baseline Models We test the current evaluation
metrics on some SOTA text-to-image synthesis
models. Here we use AttnGAN, AttnGAN++, and
CPGAN as the baseline models.

Evaluation Metrics We test the existing eval-
uation metrics based on the defined dataset and
baseline models. We use IS and FID to evaluate the
image realism, RP to evaluate the text relevance,
SOA to evaluate the object accuracy and PA to eval-
uate the relation between objects. Here, we use the
YOLO-v3 as the object detector to compute SOA.

5.1.2 Results and Discussion

We conduct text-to-image synthesis on the MS-
COCO dataset using the baseline models and eval-
uate them using the evaluation metrics we chose.
The result of different metrics on different baseline
models is shown in Table 1.

Based on the results, we can draw some in-
sights. Firstly, AttnGAN++ outperforms AttnGAN
on all metrics. Secondly, we observe that CPGAN
achieves a score close to that of real images, which
could be attributed to the use of YOLOV3 in both
CPGAN and SOA, leading to potential overfitting.

Table 1: Evaluation Metrics Result

Model IS FID SOA-I/C PA
AttnGAN 3376 36.90 49.78/47.13  40.08
AttnGAN++ 54.63 26.58 69.97/67.83 47.75
CPGAN 59.64 50.68 83.83/81.86 43.28

Real Images 51.25 2.62  91.19/90.02 100

5.2 Early experiments on hand images

5.2.1 Experimental Setup

The first experiment is about determining whether
the generated hand images are "true" (in line with
physical common sense). The choice of the hand
as an experimental target is a first attempt to chal-
lenge the current difficulties in the field. At the
time we collected the hand dataset, we found that
only about 8% of the images generated by Stable
Diffusion could be classified as true. It can be said
that the current image generation model still cannot
generate realistic hand images properly.

Datasets The first part of the dataset consists
of 400 generated images of size 512*512 pixels
from the stable diffusion official website, with the
prompt "single real hand". The second part of the
dataset contains a total of 175 real hand images
obtained from Adobe Stock. The dataset comprises
a total of 575 images, which were later resized to
128*128 pixels to facilitate training and memory
for the first experiment. We randomly selected 500
images for the training set and 75 images for the
test set.

Evaluation Metrics The determiner is binary,
so if an image is considered to be true, it is marked



as 1, and if it is false, it is marked as 0. The criteria
to label an image as true are that the shape of the
hand conforms to common sense, the lines (texture,
fingerprint), and the nails of the hand conform to
their relative positions and shapes, and the size of
each finger is relatively uniform. For the sake of
simplicity in the first experiment, we also labeled
hands with different colors (stained or lighted) and
hands with a small portion of other patterns as
correct.

Baseline As we have not been able to find a
public model of a "detector that can tell whether
a generated picture conforms to physical common
sense". We start from scratch, the candidate models
are CNN and VIT, and in this initial experiment,
we chose the simple CNN model.

5.2.2 Results and Discussion
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Figure 2: The training and testing acc over epoch

We plotted the relationship between training ac-
curacy and testing accuracy over epochs in Figure
2. We can see that the final training accuracy is
not high enough, and there is still a large gap be-
tween the test accuracy and the training accuracy.
This indicates that our model is not only overfitting
but also has extraneous bias interference. This is
because our dataset is too small and the generated
images generally have darker backgrounds, while
a large portion of the true dataset has brighter back-
grounds. It is also possible that the simple CNN
itself is one of the reasons for the poor training
results, and we set the structural complexity of the
initial experiments very low. This is not enough for
hands with complex features such as shape, texture,
relative position, and 3D visual occlusion relations.
At a time when it is unable to find hand pictures
that are further subdivided and annotated today, the
classifier based on Segmentation-learning is dif-
ficult to improve on hand images, so we replace

our classification objectives from hand to the entire
human body.

5.3 Segment+ViT
5.3.1 Experimental Setup

Figure 3: Segmented image sample

Datasets We generated about 2k images
(768*768 pixels) from the captions of the MS-
COCO dataset with random prompts from a single
person, using Stable Diffusion. (For images of
plural people, the training results are poor in
the current stage of this method.) To facilitate
training, we artificially controlled the ratio of
good to bad pictures in it to be about 1:1, for
EACH pose. For the original images with a
high degree of repetition such as "standing", a
smaller portion of the dataset should be kept in
order to prevent over-fitting. After dividing the
dataset into training, validation, and test sets in
the ratio of 7:1:2, we used shift(cv2.warpAffine),
RandomRotation(10,90), and flip to augment data
manually. With data augmentation, we try to
make our model learn the relative relationships
of various parts of the human body instead of
overfitting. We use CDCL+Pascal human body
part Segmentation to preprocess the images. We
got the segmented image like Figure 3. Finally, we
resize them to 224*224 pixels and put them into
our ViT model for learning.

Evaluation Metrics Similar to what we did with
the hand images. In this experiment, we simply
consider whether the person’s limbs, head, and
torso are present(the obscured part is also consid-
ered to be present.) and connected, and whether
their number(the three-legged man is certainly not



right), relative positions and proportions are consis-
tent with common sense. Details of distortion on
the hand and face were ignored in this experiment.

Baseline Model We used the classical ViT model
vit-base-patch16-224-in21k, which was pre-trained
on ImageNet-21k. Considering the time constraint
and the nature of this experiment as a feasibility
study, we decided to keep the pre-trained model
and fine-tune it using our own data.

Hypothesis Our Hypothesis is: Subdivision and
annotation of body parts in generated images will
make the training of the model easier. In fact, direct
training using the original generated images with
a simple ViT model can not give us satisfactory
results, the accuracy of the test set cannot be im-
proved, it only over-fits. Compare with the results
of our training later using the segmented images, it
shows that our hypothesis is relatively correct.

Step Training Loss Validation Loss Accuracy
20 0.606200 0.606544 0.632000
40 0.538100 0.535674 0.784000
60 0.579800 0488475 0.808000
80 0.405100 0452231 0.816000

100 0.467800 0429404 0.832000
120 0.407700 0.396356 0.824000
140 0.325700 0.381295 0.824000
160 0.309600 0361815 0.832000
180 0.288600 0.354236 0.840000
200 0.221200 0.348060 0.848000
220 0.217700 0.323454 0.864000

Figure 4: The validation accuracy and loss over steps
for ViT model

5.3.2 Results and Discussion

The model trained/ tested using all pose prompts
can eventually reach 86% training and 85.26% test-
ing accuracy. Even if we completely remove the
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Figure 5: The test accuracy and loss for ViT model

images of one of the poses from the training set
and use all the images of that pose as the test set,
we still get a test accuracy of about 76%. This

shows that our model has the ability to generalize
and reason.
Most importantly, we validated the idea that con-

per_device_train_batch_size=16,
evaluation_strategy="steps”,
num_train_epochs=4,
fpl6=True,

save_steps=20,
eval_steps=20,
logging_steps=10,
learning_rate=2e-3,
save_total_limit=2,
remove_unused_columns=False,
push_to_hub=False,
report_to=" tensorboard’,

load_best_model_at_end=True,

Figure 6: Hyper parameters for ViT model

tinually subdividing, identifying, and learning the
relative relationships of parts may be used to make
determinations about a wide range of general ob-
jects level by level.

5.4 Fine-tuning CLIP

5.4.1 Experimental Setup

Datasets We generated the data from the cap-
tions of the MS-COCO dataset with people ob-
jects, using the Stable Diffusion model. Our gener-
ated dataset has approximately 2500 images, where
2K images are for training and 500 for validation.
Since we focused on the human body structure, we
defined the physical rules set based on it. Then we
labeled each image according to the physical rules
set and generated free-form captions of physical
rules.

Baseline Methods In experiments, we used ViT-
B/32 CLIP as the baseline model to fine-tune. And
the visual encoder we learned for the image is ViT-
B/32 of CLIP. For the classifier, we use an MLP
with a dropout layer.

5.4.2 Results and Discussion

Model Prediction Accuracy The prediction ac-
curacy of our model on the generated dataset is
79.2% as shown in Table 2 which is remarkable. In
table 1, we can also see that the classifier can reach
a high precision on both 0 and 1 classes. However,
it has a poor performance on the recall rate of 0
class which also leads to a poor F1-score. This is
possibly due to the data imbalance.

Physical Consistency Score The Physical Con-
sistency Score is calculated from the probability of
class 1 which ranges from O to 100. As shown in



Table 2: Evaluation Metrics Result

CLASS Precision Recall F1-Score Support
0 0.82 0.51 0.63 946
1 0.78 0.94 0.86 1554
Accuracy 0.792

Physical

Physical Physical
consistency Score consistency Score consistency Score
28.11 75.29 15.22

Figure 7: Physical Consistency Score Sample

Picture x, in the first picture and the third picture
the girl has a twisted hand and the woman has 3
legs, therefore they both have a low score. The
second picture is a normal picture and its score is
high. The result shows that our model can rank a
reasonable score based on the physical rules set we
defined.

6 Conclusion and Future Work

6.1 Conclusion

In this paper, we proposed novel approaches to
solve the generalized Physical Consistency Evalu-
ation problem of Al-generated human images. In
experiments, we demonstrate that both of our ap-
proaches can have a good performance in classifi-
cation accuracy and give out a reasonable score to
judge the Physical Consistency of an image.

6.2 Future Work

Due to the limited time, we are not able to generate
and label a large dataset, but a large and balanced
dataset would definitely improve our results. Col-
lecting more images that generated different poses
and prompts would increase the accuracy.

For the Fine-tuning CLIP method, we focus on
the human body structure when defining the phys-
ical rules set, future works might further explore
whether it can be extended to more generalized
physical rules such as the relationship between dif-
ferent objects. Besides, object detection can be
utilized to extract foreground objects, which might
lead to a more stable result in theory.

For the Segment-ViT method, the idea of seg-
menting parts and learning relative positions has
been proven to work. This idea of continually sub-
dividing, identifying, and learning the relative re-
lationships of parts can be used to make determi-
nations about a wide range of general objects level
by level. A tree classification structure can be built,
such as segmenting single people from multiple
people images, segmenting hands from single peo-
ple images, and separating thumbs, index fingers,
and even nails and fingertips from hands. Then
the classification models between layers are deter-
mining whether their relative positions, sizes, and
numbers match the physical rules and finally deter-
mine the whole picture. This requires the labeling
of huge amounts of data and the annotation of de-
tailed parts of individual objects. But ultimately,
this model can distinguish most of the objects in the
world, and widely distinguish whether the images
conform to physical common sense. Because this
learning process is consistent with the way people
think, it will eventually know how to determine
whether the whole object is true by the details and
the relations of the parts as we do.

Figure 8: Subdivides object parts further

Ethics Statement

We proposed a novel approach to solve the general-
ized Physical Consistency Score Evaluation prob-
lem from Al-generated images. We use public
human-related prompts and Al image generation,
such as Stable Diffusion to collect data for our
experiments. Our code or method is potentially
subject to concerns of discrimination/bias/fairness
since the current classification of the human body
as "normal" is based on the majority of the pop-
ulation, this may lead to potential discrimination
against minority groups such as people with dis-
abilities if someone uses it inappropriately. Since
our generated images are based on the stable diffu-
sion model, the potential privacy issues associated



with the model itself need to be taken into account.
However, our results are currently being used only
for academic research for non-profit purposes. We
are not responsible for any unauthorized use by
others that causes ethical problems.
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