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Abstract

As text-to-image synthesis methods being001
widely used in real-world applications, the002
need for evaluation metrics is becoming in-003
creasingly pressing. In recent years, Inception004
Score (IS)(Salimans et al., 2016), Fréchet In-005
ception Distance (FID)(Heusel et al., 2017),006
R-precision, and Semantic Object Accuracy007
(SOA)(Hinz et al., 2019) have been the popular008
evaluation metrics used by the SOTA text-to-009
image synthesis models. Nevertheless, these010
evaluation metrics only focus on image quality,011
diversity, and consistency which is not compre-012
hensive. In this project, we propose 2 different013
methods to evaluate the physical consistency014
of the image. One method combines segmenta-015
tion and Vision Transformer (ViT)(Dosovitskiy016
et al., 2020) to predict and classify the image.017
Another method fine-tunes CLIP based on phys-018
ical rules set to learn an image encoder that019
can be used for scoring and classifying images.020
We demonstrate that both methods can reach a021
good accuracy on the dataset we built and can022
give out a reasonable score to an image.023

1 Introduction024

In recent years, generative models have acquired025

the capability to generate natural language that026

is comparable to human language, create limit-027

less synthetic images of high quality, and produce028

highly diverse human speech and music. These029

models can be utilized in various applications, such030

as generating images from text inputs or learning031

valuable feature representations. Some state-of-032

the-art models, like GANs and diffusion models,033

can generate high-quality pictures on most image-034

generation tasks.035

Despite the rapid growth of text-to-image syn-036

thesis methods, current evaluation methods are037

far from perfect. It is necessary to propose a038

more comprehensive evaluation framework. Tradi-039

tional evaluation methods such as Inception Score040

(IS)(Salimans et al., 2016) and Fréchet Inception041

Distance (FID)(Heusel et al., 2017) are intuitive but 042

have limited performance. R-precision and Seman- 043

tic Object Accuracy (SOA)(Hinz et al., 2019) are 044

better as they take the meaning of the text into con- 045

sideration. Counting Alignment (CA)(Dinh et al., 046

2021) can evaluate whether the number of objects 047

is correct, but it cannot detect some features that 048

violate physical laws. 049

Those methods only focus on image quality, di- 050

versity, and consistency which are not comprehen- 051

sive. To make evaluation metrics more comprehen- 052

sive, We suggest two distinct approaches for assess- 053

ing the physical coherence of the image. The first 054

approach involves using segmentation and Vision 055

Transformer to predict and categorize the image. 056

It segments the human in an image into different 057

parts first and then uses ViT to classify these pre- 058

processed images and give scores. The second 059

method fine-tunes CLIP based on physical princi- 060

ples to learn an image encoder that can be utilized 061

for scoring and classifying images. 062

We reproduced several experiments using four 063

different evaluation metrics: Inception Score, 064

Fréchet Inception Distance, Structure of Appear- 065

ance, and Pixel Accuracy, on four different text-to- 066

image synthesis models: AttnGAN, AttnGAN++, 067

CPGAN, and real images. Using these results as 068

our baseline, we trained and fine-tuned our models. 069

We demonstrated that both techniques can achieve 070

high accuracy on their constructed dataset and can 071

provide a reliable score for an image. 072

2 Related Work 073

CLIP To analyze inputs and outputs in a text- 074

to-image model, here introduces CLIP(Radford 075

et al., 2021)(Contrastive Language-Image Pre- 076

training). State-of-the-art computer vision systems 077

are trained to predict a set of object categories. But 078

this type of system restricted generality and us- 079

ability since demands on supervision is expanded. 080

Natural Language Processing is used to analyze 081
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the meaning of text with probability models. By082

mapping raw text to image, CLIP can predict image083

captions as visual concepts. It uses an efficient and084

scalable way to learn SOTA image representations085

on a data set of 400 million (image, text) pairs.086

Further, CLIP has been tested performances on var-087

ious downstream vision tasks, including zero-shot,088

segmentation, caption, video, etc. As one of its089

downstream tasks, comparing caption of an image090

and input text can be used to evaluate their matches.091

Capture Sub-parts of Objects Text-to-image092

generation methods can produce high-quality and093

high-resolution images, but they restricted on creat-094

ing contents that human wouldn’t accepted. Judge,095

Localize, and Edit(Park et al., 2022) aims to au-096

tomatically judge the immorality of synthesized097

images and manipulate images into a moral alter-098

native. They trained an auxiliary text-based im-099

morality classifier with 13,000 textual examples100

and corresponding binary labels, and utilized CLIP101

to convert texts and images into joint embedding,102

then the recognizer will classified input texts in a103

zero-shot manner. Next, they extended the textual104

immorality classifier to visual attribute identifica-105

tion. Employing a random input approach can mea-106

sure the importance of an image region by setting107

it masked or observed based on model’s decision108

to classify immorality. By utilizing the idea of109

textual and visual concepts identification, human110

information or body parts can be retrieved.111

ViT ViT (Vision Transformer)(Dosovitskiy et al.,112

2020) is a type of neural network architecture that113

has been shown to perform well on computer vision114

tasks such as image classification and object detec-115

tion. It is based on the Transformer architecture116

originally developed for natural language process-117

ing and replaces the traditional convolutional layers118

with self-attention mechanisms that allow the net-119

work to attend to different parts of the input image.120

This makes it particularly effective for processing121

large images and handling long-range dependen-122

cies. Vit has achieved state-of-the-art performance123

on several benchmark datasets and is considered a124

promising direction for future research in computer125

vision.126

Evaluation Metrics Although the great achieve-127

ments of the state-of-the-art methods for text-to-128

image synthesis such as GANs, Stable Diffusion,129

the present evaluation methods are not as desired.130

The current evaluation pipelines mainly focus on131

two aspects: the image quality and the conformity 132

between the image and its caption. Some com- 133

monly used evaluation metrics for the image qual- 134

ity are Inception Score (IS)(Salimans et al., 2016) 135

and Frechet Inception Distance (FID)(Heusel et al., 136

2017). IS metric uses the pretrained Inception- 137

v3 model to calculate the Kullback-Leibler diver- 138

gence (KL-divergence) between conditional distri- 139

bution and cmarginal distribution of the generated 140

images. FID calculates the Frechet distance be- 141

tween the actual images and the generated images 142

using the feature from the pretrained Inception- 143

v3 model .. In addition to these, many evaluation 144

metrics have been proposed for text-image consis- 145

tency. R-precision (RP)(Xu et al., 2017) used syn- 146

thesized image query again the input caption and 147

calculated matching score using cosine similarity 148

between image encoding vector and text encod- 149

ing vector. Semantic Object Accuracy (SOA)(Hinz 150

et al., 2019) using the pre-trained object detector 151

to evaluate whether objects mentioned in the cap- 152

tion are contained in the image, which ranks the 153

models in a similar way to humans. Furthermore, 154

there are some pipelines that combine different 155

evaluation metrics together to achieve a better per- 156

formance such as TISE (Text-to-Image Synthesis 157

Evaluation)(Dinh et al., 2021). 158

CDCL-human-part-segmentation Cross- 159

Domain Complementary Learning Using Pose 160

for Multi-Person Part Segmentation (Lin et al., 161

2020), is a human body part segmentation method 162

proposed by Kevin Lin and his team. This 163

approach takes advantage of the rich and realistic 164

variations of the real data and the easily obtainable 165

labels of the synthetic data to learn multi-person 166

part segmentation on real images without any 167

human-annotated labels. Without any human 168

labeling, this method performs comparably to 169

several state-of-the-art approaches which require 170

human labeling on Pascal-Person-Parts and COCO- 171

DensePose datasets. Their pre-trained model 172

predicts 6 body parts in the images and achieves 173

72.82% mIOU on the PASCAL-Person-Part 174

dataset. The segmentation of this model is based 175

on the human skeleton (pose) representation and 176

is less disturbed by other factors such as clothing. 177

The segmentation of the target image will help us 178

to train the classification model later. 179
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3 Preliminaries180

Traditional metrics such as IS and FID are used181

to evaluate image quality. The formulas of IS and182

FID are defined as follows:183

IS = exp(ExDKL(p(y|x) || p(y))184
185

FID = ||µr−µg||2+trace(Σr+Σg−2(ΣrΣg)
1
2 )186

where x is the generated image and y is the class187

label, Xr ∼ N (µr,Σr) and Xg ∼ N (µg,Σg) are188

the features of real images and generated images189

extracted by a pre-trained Inception-v3 model. For190

IS, smaller P (y|x) means the object in the image191

is more distinct, and larger p(y) means the im-192

ages are more diverse. For FID, a lower the dis-193

tance between real images and generated images194

means better image quality and diversity. Other195

metrics focus on the consistency between text and196

image. Semantic Object Accuracy (SOA) is pro-197

posed to determine whether the objects in the text198

can be matched in the image. There are two types199

of SOA metrics which are SOA-I (average recall be-200

tween images) and SOA-C (average recall between201

classes), their formulas are as follows:202

SOA− C =
1

|C|
∑
c∈C

1

|Ic|
∑
ic∈Ic

Y OLOv3(ic)203

204

SOA− I =
1∑

c∈C |Ic|
∑
c∈C

∑
ic∈Ic

Y OLOv3(ic)205

where C is the object class set, Ic is a set of images206

belonging to object class c and Y OLOv3(ic) ∈207

{0, 1} will return 1 if YOLOv3 detected an object208

of class c. Despite SOA can match objects between209

texts and images, it fails to consider the relation210

between objects. Positional Alignment(PA) is pro-211

posed to evaluate the position relation between ob-212

jects. PA defines a set of positional words as W213

and constructs a query problem. For each gener-214

ated image Gi and text Ti, it generates mismatched215

texts Fi by replacing the position word w. In this216

way, a set Dw = {(Gwi, Twi, Fwi)}Nw
i=1 is created,217

where Nw is the number of texts having position218

word w. PA is calculated by the query success rate219

of triplets in Dw, the formula is as follows:220

PA =
1

|W |
∑
w∈W

kw
Nw

221

where kw is the number of success cases, and |W |222

is the total number of words. Despite the aforemen-223

tioned metrics have covered wide aspects, there are224

more details needed to be considered when we eval- 225

uate the text-to-image synthesis. Inspired by the 226

existing metrics, we propose a more comprehen- 227

sive metric that can evaluate whether the generated 228

images obey the defined physical rules or common- 229

sense which are not mentioned in the original text. 230

4 Physical Consistency Evaluation and 231

Classification 232

Inspired by popular state-of-the-art methods for 233

text-to-image synthesis, our approach classifies the 234

physical inconsistency of output images. One ap- 235

proach, we use CLIP to embed image captions 236

and pixels into a common space and assign body 237

words with high prediction to each cluster of pix- 238

els. Then, we take image feature encoding to a 239

classification network to produce evaluation met- 240

rics. In another approach, we trained a classifier 241

to determine whether the generated single-person 242

images are consistent with physical common sense 243

using CDCL+Pascal Human body part Segmenta- 244

tion+Vision Transformer(ViT). 245

4.1 Segment+ViT 246

The core idea of this approach is to use a body part 247

segmentation model to automatically annotate and 248

highlight each part of the human body in the gener- 249

ated images, and later use the ViT model to learn 250

the relative relationships among them. 251

Because there is a limit to the amount of data that 252

we can label manually and the self-attention layer 253

of ViT lacks locality inductive bias, we need to aug- 254

ment our dataset. We used shift(cv2.warpAffine), 255

RandomRotation(10,90), and flip to augment our 256

data manually. By using data augmentation, we 257

want our ViT model to focus attention on the rel- 258

ative relationship of body parts, rather than mem- 259

orizing the absolute position of each part on the 260

image. We then use the pre-trained CDCL-human 261

part segmentation model to automatically segment 262

and annotate the body into 7 parts from the gen- 263

erated images. The segmented images are then 264

resized and later used for training the ViT classifi- 265

cation model. 266

Since ViT models require a huge amount of data 267

to achieve good performance. It’s not feasible to 268

train a ViT model from scratch. So we used a 269

pre-trained ViT model vit-base-patch16-224-in21k, 270

which was trained on ImageNet-21k(14 million im- 271

ages, 21,843 classes) at resolution 224x224. The 272

pre-trained model learns an inner representation 273
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of images that can then be used to extract features274

useful for downstream tasks. After that, we put in275

our data (original + augmented) to fine-tune our276

ViT model. In this way, we obtain a classifier that277

can determine with acceptable accuracy whether278

the generated single-person picture conforms to279

physical common sense.280

4.2 Fine-tuned CLIP281

As shown in Figure 1, Our model takes advantage282

of the basic CLIP model. We used three steps to283

analyze the physical rules of images and evaluate284

the physical consistency score: 1. generate texts285

that describe the images, 2. fine-tune the CLIP286

base model, and 3. classify the image embedding287

to evaluate scores.288

4.2.1 Free-Form Caption Generation289

First, we tested the accuracy of the CLIP model290

with prompts of different structures, content, sen-291

sitivity, and inclusiveness. A good finding shows292

CLIP is not sensitive to the choice of numbers,293

some words will hint at the entity of images, how-294

ever, they depend on the quality of data from the295

pre-trained model. According to each image, we296

manually annotate them by the following features:297

how many people are in the picture, the visual im-298

pact of character sizes in distances, the direction in299

which characters are facing, and the correctness of300

shapes for character head, hands, and legs. Then301

we use a template to generate free-form captions302

for the input images, and in addition, on the tem-303

plate, we include the word "human" to imply it’s a304

human-related text-image matching job.305

4.2.2 Fine-tuning306

Our approach to fine-tuning CLIP for Physical Con-307

sistency Evaluation is shown in Figure 1. Specifi-308

cally, text and image representations are both gener-309

ated by transformers, vision transformer is applied310

to produce image representation. The trained im-311

age encoder is used to produce evaluation metrics.312

Language Encoder We adopt the well-designed313

pre-trained language model from the CLIP base314

which is published by OpenAI. We analyzed the315

language model and found out it has logical flows.316

And training a language model with 400,000,000317

text is difficult for our work due to time limitations,318

thus we decided to fine-tune the CLIP pre-trained319

language model. We batched free-form captions320

into a balanced batch sampler, to maximize and321

reduce the bias. Then we tokenize batches of free- 322

form captions and feed them into the pre-trained 323

language model, for a total of 10 epochs, and all 324

model weights are updated. 325

Image Encoder We generated images from cap- 326

tions of the MS-COCO dataset with people objects 327

with the Stable Diffusion model. We leverage the 328

dataset to make our image annotation equally con- 329

tributed. Then input images are downsampled to 330

be fed into a vision transformer. Assuming the in- 331

put image size is H ×W , and the down-sampling 332

factor is ds, we define H̃ = H
ds and W̃ = W

ds . 333

After the text and image inputs are embedded, 334

we correlate them using inner products, creating 335

a tensor H̃ × W̃ × N as the inner product of the 336

N -dimensional vector of text embedding and the 337

image embedding. After obtaining the correlation 338

tensor, we check the cosine similarity of text and 339

image pairs for minimizing it. 340

4.2.3 Physical Consistency Score Evaluation 341

For the downstream fine-tuning experiments, we 342

treated the fine-grained physical consistency at- 343

tributes from the image encoder as a binary clas- 344

sification task where each attribute in an image 345

is assumed as an independent feature and images 346

can be assigned multiple features which are shown 347

in Figure 1. Then we used an MLP layer with a 348

dropout of 0.2 to get the binary classification re- 349

sult. The score is calculated from the weights of 350

matched body parts multiply by the result classifi- 351

cation probability. 352

5 Experiment 353

In the experiment section, we first test the previ- 354

ous evaluation metrics for text-image matching us- 355

ing the baseline model on the MS-COCO dataset. 356

And some early classification experiments based 357

on whether it conforms to common sense were 358

conducted on hand images. Then we evaluate 359

both the segmentation + ViT method and the fine- 360

tuning CLIP method in the generated images set 361

with people objects from the MS-COCO dataset. 362

We demonstrate the segmentation + ViT method 363

and the fine-tuning CLIP method has a remarkable 364

classification accuracy on our generated dataset. 365

What’s more, we will show both methods can give 366

out a reasonable score to judge the physical consis- 367

tency of the image based on the defined physical 368

rules set. 369
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Figure 1: The architecture of Fine-tuned CLIP and Physical Consistency Score Evaluation

5.1 Evaluation Metrics Reproduce370

5.1.1 Experimental Setup371

Datasets We use the MS-COCO dataset to test the372

evaluation metrics. This dataset has approximately373

120K images, where 80K images are for training374

and 40K for validation. The MS-COCO dataset375

also has coordinates of bounding boxes and seg-376

mentation masks for 80 categories of objects and377

pixel maps of 91 categories of background regions378

like walls, sky, or grass.379

Baseline Models We test the current evaluation380

metrics on some SOTA text-to-image synthesis381

models. Here we use AttnGAN, AttnGAN++, and382

CPGAN as the baseline models.383

Evaluation Metrics We test the existing eval-384

uation metrics based on the defined dataset and385

baseline models. We use IS and FID to evaluate the386

image realism, RP to evaluate the text relevance,387

SOA to evaluate the object accuracy and PA to eval-388

uate the relation between objects. Here, we use the389

YOLO-v3 as the object detector to compute SOA.390

5.1.2 Results and Discussion391

We conduct text-to-image synthesis on the MS-392

COCO dataset using the baseline models and eval-393

uate them using the evaluation metrics we chose.394

The result of different metrics on different baseline395

models is shown in Table 1.396

Based on the results, we can draw some in-397

sights. Firstly, AttnGAN++ outperforms AttnGAN398

on all metrics. Secondly, we observe that CPGAN399

achieves a score close to that of real images, which400

could be attributed to the use of YOLOv3 in both401

CPGAN and SOA, leading to potential overfitting.402

Table 1: Evaluation Metrics Result

Model IS FID SOA-I/C PA

AttnGAN 33.76 36.90 49.78/47.13 40.08

AttnGAN++ 54.63 26.58 69.97/67.83 47.75

CPGAN 59.64 50.68 83.83/81.86 43.28

Real Images 51.25 2.62 91.19/90.02 100

5.2 Early experiments on hand images 403

5.2.1 Experimental Setup 404

The first experiment is about determining whether 405

the generated hand images are "true" (in line with 406

physical common sense). The choice of the hand 407

as an experimental target is a first attempt to chal- 408

lenge the current difficulties in the field. At the 409

time we collected the hand dataset, we found that 410

only about 8% of the images generated by Stable 411

Diffusion could be classified as true. It can be said 412

that the current image generation model still cannot 413

generate realistic hand images properly. 414

Datasets The first part of the dataset consists 415

of 400 generated images of size 512*512 pixels 416

from the stable diffusion official website, with the 417

prompt "single real hand". The second part of the 418

dataset contains a total of 175 real hand images 419

obtained from Adobe Stock. The dataset comprises 420

a total of 575 images, which were later resized to 421

128*128 pixels to facilitate training and memory 422

for the first experiment. We randomly selected 500 423

images for the training set and 75 images for the 424

test set. 425

Evaluation Metrics The determiner is binary, 426

so if an image is considered to be true, it is marked 427
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as 1, and if it is false, it is marked as 0. The criteria428

to label an image as true are that the shape of the429

hand conforms to common sense, the lines (texture,430

fingerprint), and the nails of the hand conform to431

their relative positions and shapes, and the size of432

each finger is relatively uniform. For the sake of433

simplicity in the first experiment, we also labeled434

hands with different colors (stained or lighted) and435

hands with a small portion of other patterns as436

correct.437

Baseline As we have not been able to find a438

public model of a "detector that can tell whether439

a generated picture conforms to physical common440

sense". We start from scratch, the candidate models441

are CNN and VIT, and in this initial experiment,442

we chose the simple CNN model.443

5.2.2 Results and Discussion444

Figure 2: The training and testing acc over epoch

We plotted the relationship between training ac-445

curacy and testing accuracy over epochs in Figure446

2. We can see that the final training accuracy is447

not high enough, and there is still a large gap be-448

tween the test accuracy and the training accuracy.449

This indicates that our model is not only overfitting450

but also has extraneous bias interference. This is451

because our dataset is too small and the generated452

images generally have darker backgrounds, while453

a large portion of the true dataset has brighter back-454

grounds. It is also possible that the simple CNN455

itself is one of the reasons for the poor training456

results, and we set the structural complexity of the457

initial experiments very low. This is not enough for458

hands with complex features such as shape, texture,459

relative position, and 3D visual occlusion relations.460

At a time when it is unable to find hand pictures461

that are further subdivided and annotated today, the462

classifier based on Segmentation-learning is dif-463

ficult to improve on hand images, so we replace464

our classification objectives from hand to the entire 465

human body. 466

5.3 Segment+ViT 467

5.3.1 Experimental Setup 468

Figure 3: Segmented image sample

Datasets We generated about 2k images 469

(768*768 pixels) from the captions of the MS- 470

COCO dataset with random prompts from a single 471

person, using Stable Diffusion. (For images of 472

plural people, the training results are poor in 473

the current stage of this method.) To facilitate 474

training, we artificially controlled the ratio of 475

good to bad pictures in it to be about 1:1, for 476

EACH pose. For the original images with a 477

high degree of repetition such as "standing", a 478

smaller portion of the dataset should be kept in 479

order to prevent over-fitting. After dividing the 480

dataset into training, validation, and test sets in 481

the ratio of 7:1:2, we used shift(cv2.warpAffine), 482

RandomRotation(10,90), and flip to augment data 483

manually. With data augmentation, we try to 484

make our model learn the relative relationships 485

of various parts of the human body instead of 486

overfitting. We use CDCL+Pascal human body 487

part Segmentation to preprocess the images. We 488

got the segmented image like Figure 3. Finally, we 489

resize them to 224*224 pixels and put them into 490

our ViT model for learning. 491

Evaluation Metrics Similar to what we did with 492

the hand images. In this experiment, we simply 493

consider whether the person’s limbs, head, and 494

torso are present(the obscured part is also consid- 495

ered to be present.) and connected, and whether 496

their number(the three-legged man is certainly not 497
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right), relative positions and proportions are consis-498

tent with common sense. Details of distortion on499

the hand and face were ignored in this experiment.500

Baseline Model We used the classical ViT model501

vit-base-patch16-224-in21k, which was pre-trained502

on ImageNet-21k. Considering the time constraint503

and the nature of this experiment as a feasibility504

study, we decided to keep the pre-trained model505

and fine-tune it using our own data.506

Hypothesis Our Hypothesis is: Subdivision and507

annotation of body parts in generated images will508

make the training of the model easier. In fact, direct509

training using the original generated images with510

a simple ViT model can not give us satisfactory511

results, the accuracy of the test set cannot be im-512

proved, it only over-fits. Compare with the results513

of our training later using the segmented images, it514

shows that our hypothesis is relatively correct.515

Figure 4: The validation accuracy and loss over steps
for ViT model

5.3.2 Results and Discussion516

The model trained/ tested using all pose prompts517

can eventually reach 86% training and 85.26% test-518

ing accuracy. Even if we completely remove the

Figure 5: The test accuracy and loss for ViT model

519
images of one of the poses from the training set520

and use all the images of that pose as the test set,521

we still get a test accuracy of about 76%. This522

shows that our model has the ability to generalize 523

and reason. 524

Most importantly, we validated the idea that con-

Figure 6: Hyper parameters for ViT model

525
tinually subdividing, identifying, and learning the 526

relative relationships of parts may be used to make 527

determinations about a wide range of general ob- 528

jects level by level. 529

5.4 Fine-tuning CLIP 530

5.4.1 Experimental Setup 531

Datasets We generated the data from the cap- 532

tions of the MS-COCO dataset with people ob- 533

jects, using the Stable Diffusion model. Our gener- 534

ated dataset has approximately 2500 images, where 535

2K images are for training and 500 for validation. 536

Since we focused on the human body structure, we 537

defined the physical rules set based on it. Then we 538

labeled each image according to the physical rules 539

set and generated free-form captions of physical 540

rules. 541

Baseline Methods In experiments, we used ViT- 542

B/32 CLIP as the baseline model to fine-tune. And 543

the visual encoder we learned for the image is ViT- 544

B/32 of CLIP. For the classifier, we use an MLP 545

with a dropout layer. 546

5.4.2 Results and Discussion 547

Model Prediction Accuracy The prediction ac- 548

curacy of our model on the generated dataset is 549

79.2% as shown in Table 2 which is remarkable. In 550

table 1, we can also see that the classifier can reach 551

a high precision on both 0 and 1 classes. However, 552

it has a poor performance on the recall rate of 0 553

class which also leads to a poor F1-score. This is 554

possibly due to the data imbalance. 555

Physical Consistency Score The Physical Con- 556

sistency Score is calculated from the probability of 557

class 1 which ranges from 0 to 100. As shown in 558
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Table 2: Evaluation Metrics Result

CLASS Precision Recall F1-Score Support

0 0.82 0.51 0.63 946

1 0.78 0.94 0.86 1554

Accuracy 0.792

Figure 7: Physical Consistency Score Sample

Picture x, in the first picture and the third picture559

the girl has a twisted hand and the woman has 3560

legs, therefore they both have a low score. The561

second picture is a normal picture and its score is562

high. The result shows that our model can rank a563

reasonable score based on the physical rules set we564

defined.565

6 Conclusion and Future Work566

6.1 Conclusion567

In this paper, we proposed novel approaches to568

solve the generalized Physical Consistency Evalu-569

ation problem of AI-generated human images. In570

experiments, we demonstrate that both of our ap-571

proaches can have a good performance in classifi-572

cation accuracy and give out a reasonable score to573

judge the Physical Consistency of an image.574

6.2 Future Work575

Due to the limited time, we are not able to generate576

and label a large dataset, but a large and balanced577

dataset would definitely improve our results. Col-578

lecting more images that generated different poses579

and prompts would increase the accuracy.580

For the Fine-tuning CLIP method, we focus on581

the human body structure when defining the phys-582

ical rules set, future works might further explore583

whether it can be extended to more generalized584

physical rules such as the relationship between dif-585

ferent objects. Besides, object detection can be586

utilized to extract foreground objects, which might587

lead to a more stable result in theory.588

For the Segment-ViT method, the idea of seg- 589

menting parts and learning relative positions has 590

been proven to work. This idea of continually sub- 591

dividing, identifying, and learning the relative re- 592

lationships of parts can be used to make determi- 593

nations about a wide range of general objects level 594

by level. A tree classification structure can be built, 595

such as segmenting single people from multiple 596

people images, segmenting hands from single peo- 597

ple images, and separating thumbs, index fingers, 598

and even nails and fingertips from hands. Then 599

the classification models between layers are deter- 600

mining whether their relative positions, sizes, and 601

numbers match the physical rules and finally deter- 602

mine the whole picture. This requires the labeling 603

of huge amounts of data and the annotation of de- 604

tailed parts of individual objects. But ultimately, 605

this model can distinguish most of the objects in the 606

world, and widely distinguish whether the images 607

conform to physical common sense. Because this 608

learning process is consistent with the way people 609

think, it will eventually know how to determine 610

whether the whole object is true by the details and 611

the relations of the parts as we do. 612

Figure 8: Subdivides object parts further

Ethics Statement 613

We proposed a novel approach to solve the general- 614

ized Physical Consistency Score Evaluation prob- 615

lem from AI-generated images. We use public 616

human-related prompts and AI image generation, 617

such as Stable Diffusion to collect data for our 618

experiments. Our code or method is potentially 619

subject to concerns of discrimination/bias/fairness 620

since the current classification of the human body 621

as "normal" is based on the majority of the pop- 622

ulation, this may lead to potential discrimination 623

against minority groups such as people with dis- 624

abilities if someone uses it inappropriately. Since 625

our generated images are based on the stable diffu- 626

sion model, the potential privacy issues associated 627
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with the model itself need to be taken into account.628

However, our results are currently being used only629

for academic research for non-profit purposes. We630

are not responsible for any unauthorized use by631

others that causes ethical problems.632
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The code of our experiments can be found at640
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566Project-Evaluating-the-Correctness-of-Text-to-Image-Generations.642
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