
HM Recommendation System

Author(s)
csci567_id05: Zhijie wu, Fanyou Meng, Honghu Luo

Abstract

In this project, we need to recommend top 12 personalized articles to each customer1

shown in the H&M dataset. In the process, we used some data preprocessing2

techniques to reduce the data size and applied several baseline models. Since the3

results of a single baseline model did not meet our expectations, we employed4

several ensemble techniques in the final step to further optimize the results.5

1 Introduction6

Team ID: csci567_id057

Team Member: Zhijie Wu, Fanyou Meng, Honghu Luo;8

Team Strategy: Baseline + Ensemble.9

1.1 Overview10

To get our scheme closer to the given dataset, we first took a deep look at the importance of features11

(via sklearn.ensamble) and the data distribution of the dataset (provided by Kaggle). We then12

discovered that the dataset was so large that most matrix-based recommendation algorithms could not13

handle it. Therefore, we adopted various data preprocessing techniques in different baseline models14

to reduce the size of the H&M dataset, such as time constraints and clustering methods, etc. As15

mentioned in the abstract section, we experimented different baseline models, the best ones were:16

SVD_Sort (0.0221), K-means + Predictions on transaction dates Strategy (0.0226), K-means17

+ SVD_Sort (0.0218). According to the characteristics and data requirements of different models,18

we performed different data processing and filtering techniques for each model, and fine-tuned the19

hyperparameters as much as possible. In the second section, we will introduce the specific details and20

corresponding codes of each baseline. After this, we chose to apply the ensemble techniques with the21

predictions generated by these better performing models, which will be described in detail in Section22

III. Meanwhile, in Section IV, we also briefly introduce other attempted schemes and their results.23

2 Baseline24

In this section, we will introduce some baseline models that we used and the results we obtained.25

2.1 SVD_Sort Strategy26

2.1.1 General Ideas27

In this strategy, I employed a package called reco [3] , and we considered popularity to be one of the28

most valuable tags to help us make recommendations. Then, to combine popularity and purchase29

date, I added another column called pop_score, which means that if an item was purchased recently,30

it will have a higher pop_score than if it was purchased a long time ago; According to such tuple:31



{ ’ use r ’ : " c u s t o m e r _ i d " , ’ i tem ’ : " a r t i c l e _ i d " , ’ va lue ’ : ’ pop_score ’ }32

I trained a singular value decomposition (SVD) matrix which was helpful for us to extract features33

and correlations from the user-item-pop_score matrix.34

In the next step, I got four datasets with the highest volume of transactions and iterated through all the35

customers to find if they were in these four training sets, if so, this algorithm would work based on36

the results of the SVD and the list of most popular articles (via pop_score) to recommend. Otherwise,37

the algorithm would only make recommendations based on the list of most popular articles.38

2.1.2 Data Processing and Cleaning39

Data Processing: In this part, I paid more attention on recent data, so for the SVD matrix, I only40

selected 16 weeks of transaction data to build this model. I used pop_factor to show the popularity of41

one article, (which equals 1 divided by the number of days between the date of purchase and the last42

day of record) then summed up pop_factor of all articles as a new attribute named pop_score for each43

article.44

Also, I took the transaction data of every four weeks as the four training sets, in which we could find45

the dataset of our customer group, and the smaller the sequence number of the dataset (from train1 to46

train4), the higher its priority.47

2.1.3 Result48

As a result, I ran this model for about 5 times with minor changes on parameters. For instance, I may49

revise the learning_rate of Funk_SVD to 0.002 and reset iterations to 150; then I increased the size50

of the training set. However, the results were not much different, the score always hovered around51

0.0220, and the highest score via this algorithm was 0.0221 which was used as one of our baselines.52

2.1.4 How to Run the Code53

As you can see, there is a file in the zip file named H&M svd that is the code for this algorithm, and54

after run the script:55

p i p i n s t a l l − r r e q u i r e m e n t s . t x t56

you can get all the dependencies needed, then revise the path of those source files like transaction.csv,57

article.csv and so on, to make sure it can read these files successfully, then run H-M-svd.ipynb file,58

you can finally get a submission.csv file.59

2.2 K-means + SVD_Sort Strategy60

2.2.1 General Ideas61

In this case, we decided to use K-means algorithm firstly to divide all customers to three clusters62

based on their attributes, and then divided transaction.csv to corresponding clusters. Then we used the63

separated dataset to train our SVD_Sort model (which has been introduced in the previous section)64

so that we could make more precise recommendation since different clusters might have different65

popular articles. The difference between this algorithm with the previous one is that we can find the66

most popular articles among a cluster of customers and make recommendation, which we thought67

was much more rational than the previous one.68

2.2.2 Data Processing and Cleaning69

K-means: After trying several baseline models, we started thinking about clustering methods, which70

can be used to train individual recommenders for each group of customers and provide complementary71

information to the models. For clustering, we used the K-means algorithm which is supported by72

well-developed open source packages. The random forest regressor imported from the sklearn public73

2



package can rank the importance of features from a dataset. It accepts the entire dataset as input and74

returns feature importance rankings. We decided to cluster based on customer information instead of75

article information, and let a random forest regressor rank the features of the customers. As the graph76

(b) shown, we used the top five user features as the input to the K-means algorithm. In K-means,77

it iterated from K= 1 to 10 and generated the graph (a), and finally we use the Elbow Method to78

determine the final value of K to be 3 (although 4 seems to be fine too). As the result, we clustered79

customers to 3 groups and produced a new file customers_clustered.csv.80

(a) Elbow Method For Optimal K (b) Feature Importance Ranking

SVD_Sort: After reading customers_clustered.csv, we divided the transaction data into 3 groups81

with respect to the corresponding customer cluster, and then used such (customer, transaction) pairs82

to make recommendations for customers in each group.83

2.2.3 Result84

SVD_Sort: Compared to the previous algorithm, this time I chose to use about 40 weeks’ data85

to build SVD matrix since the data granularity of the previous version was not satisfied, and even86

revised volumes of the training set to cover more customers in our transaction data. (If we choose all87

transaction data, it will exceed the limit of RAM in the google collab). As a result, our final score88

was 0.0218. (If we didn’t change the size of the training sets, the result didn’t change much. Because89

when we only use 16 weeks’ data for SVD, leading to lots of our prediction were just the same as the90

12 most popular articles recently). Though our final score was not improved, we used this as another91

important baseline.92

2.2.4 How to Run the Code93

K-means: Simply run k-means-and-feature-importance-for-customers.ipynb with the raw H&M94

dataset as input.95

SVD_Sort: After K-means, we can get a new csv file which has one more column named clusters to96

show which group this customer is in, then run h-m-Kmeans-svd.ipynb to run this algorithm, and97

finally will get a submission.csv file.98

2.3 K-means + Predictions on transaction dates Strategy99

2.3.1 General Ideas100

This strategy uses the K-means algorithm to cluster customers into 12 categories with digital rep-101

resentation of all attributes of customers. Then we shaped the transaction into weekly purchases,102

and use the data in the last week to train our model. For customers that we don’t have many data to103

analyze, we can use popular articles in the last week. Lastly, we use an equation with respect to x,104

which is number of day before the week that we are predicting on105

(25000/
√
x) + 150000 ∗ e−0.2x − 1000

3



to compute the values of each transaction to make predictions. After combining processed prediction106

and popular articles, it can produce recommendations for each customer.107

2.3.2 Data Processing and Cleaning108

Processing: It changes all customer attributes from word representation to digit representation. And109

it uses the standardScaler normalization method to normalize customer data.110

Cleaning: During data processing, it might involving many steps for copying data. Once we found111

out that it will not be used again, we will delete the data to prevent excessive RAM usage.112

2.3.3 Result113

This strategy makes predictions on each cluster group of customers at a time, and combines them at114

the end. It gives 0.0226 in comparison to our previous models, they are around the same. But this115

strategy is very time efficient and it only takes 150s to execute and that includes the reading process116

for huge .csv files.117

2.3.4 How to Run the Code118

After installing the dependencies and changing the path for input files, you can simply run the .ipynb119

file on kaggle with an accelerator GPU, and it will produce the recommendation for customers.120

3 Ensemble121

Generated better recommendation results by aggregating the results of each baseline model.122

3.1 General Ideas123

When our baseline models have reached a stalemate, we learned an ensemble approach from an open124

source material on Kaggle, which allowed us to reuse the predictions generated by the less-than-ideal125

baseline models and synthesized a more robust result - which demonstrated a much higher accuracy126

during the test.127

3.2 Results and Methods128

At very beginning, I selected the top 3 best performing models among all the baseline models:129

SVD_Sort (0.0221), K-means + Predictions on transaction dates Strategy (0.0226), K-means +130

SVD_Sort (0.0218). To reduce any possible bias, I first trained an NCF recommendation model with131

a small amount of data - this model computes each (customer, article) pair and then makes predictions.132

For this reason, it is difficult for this algorithm to make recommendations on such a large amount of133

data. However, here I limited its computations to the articles that have been recommended by the first134

three baseline models, which greatly reduced its workload and had the ability to re-examine all the135

previously recommended products from a more objective perspective. The final result was 0.0231136

that was a huge improvement from the previous baseline models.137

In the next step, we found an open source prediction which has a high test score (0.0238) and I138

applied the ensemble tricks again with it and all the predictions we generated before. The methods I139

tried was the following:140

Majority Voting: This is a very simple algorithm that assumes all recommendation models have141

equal weights and selects the top 12 articles with the most mentions. The test result of this method142

finally reached 0.0239.143

Average Weights: I used each model’s test score divided by the sum of all test scores as the weight144

for each model and selected the top 12 highest weighted articles for each customer. The test result is145

0.0239 that is indistinguishable from the majority voting method.146

4



Random Weights Fine-tuned on the Dev Set: This time I used random weights to reduce the147

inherent bias that can be present with classical methods. The random weights were then slightly148

fine-tuned on a small development set. The final result reached 0.0240 after several adjustments.149

3.3 How to Run the Code150

Run recommenders-ncf.ipynb with one extra input res_blend.csv that aggregated the results from the151

top 3 baselines. The input file res_blend.csv is an output of h-m-ensemble-magic.ipynb. Run h-m-152

ensemble-magic.ipynb with input files sumbissions_{i}.csv, which are the outputs from baselines.153

4 Conclusion154

4.1 Challenge155

Looking back on the entire project, we encountered many challenges such as large data volume and156

high time cost.157

Large data volume: At the early stage of this project, we checked a lot of information online to give158

us inspiration to deal with this problem, and the first tough challenge we met was that the amount159

of our data was so huge that it always exceeded the limit of RAM in the kaggle platform, then we160

migrated our code to Google Colab. However, things didn’t go well, then we had to choose partial161

data to run our code on some particular models.162

High Time Cost: When we wanted to build a recommendation system, we needed to train cor-163

responding model, which was really time consuming. For instance, when we used NCF to make164

predictions, it took more than 20 hours to train such a model, but it eventually reported errors because165

of the limit of RAM, which wasted a lot of time.166

4.2 Achievement167

Before the start of this project, the members of our group had not been exposed to such a large amount168

of data, so we did not conduct data screening but started building the model directly. However, due to169

the large amount of data, many models collapsed during the operation, and some of them were very170

expensive to generating predictions. In fact, we have tried more algorithms than mentioned in the171

report. Due to the difficulties, we had to re-observe the data and realized that data filtering can greatly172

improve the efficiency after reviewing various materials. For example, the clustering algorithm does173

a good job. Meanwhile, many features in a sparse dataset are probably not important at all, we found174

we can abandon them boldly.175

In addition, through our actual practice, we observed that the amount of data used for model training176

is not the more the better. When we trained with the most recent 8 weeks of data, the results were177

not much different from 16 weeks of data, and the results of one year of data were more similar to178

the results of training with 16 weeks of data. What this actually tells us is that in such a dataset that179

is closely tied to the timeline, the distant data is likely to be meaningless, and this makes sense in180

reality. The type of product that customers loved 2 years ago may have fallen out of favor lately.181

For this project, we slightly adopted customer features in training, and did not have a good method182

and not enough time to apply article features, which included important image information. We guess183

that’s why our scores got stuck in a certain stalemate and struggled to improve. In the future, we will184

consider adding article and image information to the scheme design.185

4.3 Failed Version186

In this part, we will briefly describe some algorithms that have been tried but discarded due to187

unsatisfactory test scores.188

5



4.3.1 Turicreate Model [1]189

At the beginning, I thought this turicreate model was really helpful for our problem, and this article[1]190

was mainly talking about how to build a recommendation system based on History Purchase Data.191

Then I came to Turi Api Documentation [2] to learn about this model, and I found that this model192

had many strategies to make recommendation, for instance: Popular-based recommenders, item193

content recommenders and item similarity models (I mainly use these three strategies to build our194

recommendation system).195

However, when I tried to use popular-based recommenders to plug in our training set, I found that our196

transaction.csv file was so large that it was impossible to use pandas.pivot_table to build a matrix for197

the whole data. (That always exceeded the limit of Ram in Kaggle Platform). Then I had to migrate198

my code to Google Collab and gave up normalized matrix. Then I tried to use collaborative filtering199

model to build this recommendation system via two different strategies: Cosine Similarity and200

Pearson Similarity to give recommendation based on user-item matrix, and even use some strategies201

like RMSE to evaluate our model. As a result, I took about one week to learn this model and built a202

recommendation system with three different strategies, but the highest score of all was only 0.00450.203

From partial to all data, I tested 7 times in total, each time combining different models and strategies204

to make recommendations, but didn’t end up with a satisfactory score (much lower than expected).205

Therefore, I decided to give up this scheme and use other models as our baseline.206

4.3.2 Two Towers207

The Two Towers model is a deep neural network architecture that first analyzes the characteristics of208

customers and articles separately, and then aggregates the information together in the final layers to209

make recommendations. It was developed by tensorflow-recommenders and it already had a decent210

test score when I only entered 8 weeks of transaction data. However, after including all 16 weeks of211

data, this model took over 8 hours to train and 5 minutes per 1000 customers to make predictions.212

After finishing training the model, I didn’t have enough time and equipment to support it to complete213

all the predictions, so I had to give up this method.214

Reference215

[1] Tjokro, Moorissa. “How to Build a Recommendation System for Purchase Data (Step-by-Step).” Medium,216

DataDrivenInvestor, 15 Oct. 2018, https://medium.datadriveninvestor.com/how-to-build-a-recommendation-217

system-for-purchase-data-step-by-step-d6d7a78800b6.218

[2] “Recommender.” Recommender - Turi Create API 6.4.1 Documentation, 9 Oct. 2020,219

https://apple.github.io/turicreate/docs/api/turicreate.toolkits.recommender.htm.220

[3] mayukh18, Mayukh18. “Reco: A Simple Yet Versatile Recommendation Systems Library in Python.”221

GitHub, 30 Mar. 2020, https://github.com/mayukh18/reco.222

[4] “Introducing Tensorflow Recommenders.” The TensorFlow Blog, 23 Sept. 2020,223

https://blog.tensorflow.org/2020/09/introducing-tensorflow-recommenders.html.224

[5] Philipe, Hervind. “H&M: Faster Trending Products Weekly.” Kaggle, Kaggle, 22 Mar. 2022,225

https://www.kaggle.com/code/hervind/h-m-faster-trending-products-weekly/notebook.226

[6] Seeda, Pathairush. “A Complete Guide to Recommender System-Tutorial with Sklearn, Surprise, Keras,227

Recommender.” Medium, Towards Data Science, 13 Oct. 2021, https://towardsdatascience.com/a-complete-228

guide-to-recommender-system-tutorial-with-sklearn-surprise-keras-recommender-5e52e8ceace1.229

[7] Morty, Tarick. “[Lb 0.0240] H&M Ensemble Magic - Multi Blend.” Kaggle, Kaggle, 29 Apr. 2022,230

https://www.kaggle.com/code/tarique7/lb-0-0240-h-m-ensemble-magic-multi-blend.231

[8] Lebovitz, Ben. “K-Means and Feature Importance for Articles.” Kaggle, Kaggle, 29 Apr. 2022,232

https://www.kaggle.com/code/beezus666/k-means-and-feature-importance-for-articles.233

6


	Introduction
	Overview

	Baseline
	SVD_Sort Strategy
	General Ideas
	Data Processing and Cleaning
	Result
	How to Run the Code

	K-means + SVD_Sort Strategy
	General Ideas
	Data Processing and Cleaning
	Result
	How to Run the Code

	K-means + Predictions on transaction dates Strategy
	General Ideas
	Data Processing and Cleaning
	Result
	How to Run the Code


	Ensemble
	General Ideas
	Results and Methods
	How to Run the Code

	Conclusion
	Challenge
	Achievement
	Failed Version
	Turicreate Model [1]
	Two Towers



